Soret and Dufour effects on MHD peristaltic transport of Jeffrey fluid in a curved channel with convective boundary conditions

نویسندگان

  • Tasawar Hayat
  • Hina Zahir
  • Anum Tanveer
  • Ahmad Alsaedi
چکیده

The purpose of present article is to examine the peristaltic flow of Jeffrey fluid in a curved channel. An electrically conducting fluid in the presence of radial applied magnetic field is considered. Analysis of heat and mass transfer is carried out. More generalized realistic constraints namely the convective conditions are utilized. Soret and Dufour effects are retained. Problems formulation is given for long wavelength and low Reynolds number assumptions. The expressions of velocity, temperature, heat transfer coefficient, concentration and stream function are computed. Effects of emerging parameters arising in solutions are analyzed in detail. It is found that velocity is not symmetric about centreline for curvature parameter. Also maximum velocity decreases with an increase in the strength of magnetic field. Further it is noticed that Soret and Dufour numbers have opposite behavior for temperature and concentration.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Soret and Dufour Effects on Peristaltic Transport of MHD Fluid with Variable Viscosity

This article looks at the Soret and Dufour effects on the magnetohydrodynamic (MHD) peristaltic flow of variable viscosity fluid in a symmetric channel. Analysis is presented in the presence of Ohmic heating. Results for the stream function, temperature and concentration are constructed. The variations of sundry parameters are analyzed.

متن کامل

Soret and Dufour Effects on MHD Peristaltic Flow of Jeffrey Fluid in a Rotating System with Porous Medium

The objective of present paper is to examine the peristaltic flow of magnetohydrodynamic (MHD) Jeffrey fluid saturating porous space in a channel through rotating frame. Unlike the previous attempts, the flow formulation is based upon modified Darcy's law porous medium effect in Jeffrey fluid situation. In addition the impacts due to Soret and Dufour effects in the radiative peristaltic flow ar...

متن کامل

Flow Over an Exponentially Stretching Porous Sheet with Cross-diffusion Effects and Convective Thermal Conditions

This article investigates the influence of cross-diffusion on the viscous fluid flow over a porous sheet stretching exponentially by applying the convective thermal conditions. Velocity slip at the boundary is considered. The numerical solutions to the governing equations are evaluated using successive linearisation procedure and Chebyshev collocation method. It is observed from this study that...

متن کامل

Characterization of unsteady double-diffusive mixed convection flow with soret and dufour effects in a square enclosure with top moving lid

The present study considers the numerical examination of an unsteady thermo-solutal mixed convection when the extra mass and heat diffusions, called as Soret and Dufour effects, were not neglected. The numerical simulations were performed in a lid-driven cavity, where the horizontal walls were kept in constant temperatures and concentrations. The vertical walls were well insulated. A finite vol...

متن کامل

Effects of Some Thermo-Physical Parameters on Free Convective Heat and Mass Transfer over Vertical Stretching Surface at Absolute Zero

Effects of some thermo-physical parameters on free convective heat and mass transfer over a vertical stretching surface at lowest level of heat energy in the presence of suction is investigated. The viscosity of the fluid is assumed to vary as a linear function of temperature and thermal conductivity is assumed constant. A similarity transformation is applied to reduce the governing equations i...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 12  شماره 

صفحات  -

تاریخ انتشار 2017